首页 最新 热门 推荐

  • 首页
  • 最新
  • 热门
  • 推荐

PySpark之金融数据分析(Spark RDD、SQL练习题)

  • 25-02-17 09:21
  • 4145
  • 12537
blog.csdn.net

目录

一、数据来源

二、PySpark RDD编程

1、查询特定日期的资金流入和流出情况

2、活跃用户分析

三、PySpark SQL编程

1、按城市统计2014年3月1日的平均余额

2、统计每个城市总流量前3高的用户

四、总结


一、数据来源

本文使用的数据来源于天池大赛数据集,由蚂蚁金服提供,包含用户基本信息、申购赎回记录、收益率、银行间拆借利率等多个维度,本文通过PySpark实现对该数据集的简单分析。

数据来源:天池-资金流入流出预测-挑战Baseline

二、PySpark RDD编程

数据都已上传到HDFS的/data目录下,对于分析结果,保存至/output目录下。

1、查询特定日期的资金流入和流出情况

使用user_balance_table,计算出所有用户在每一天的总资金流入和总资金流出量。

输出格式如下:

<日期> <资金流入量> <资金流出量>

代码如下:

  1. from pyspark.sql.functions import col, mean, round, row_number, sum
  2. from pyspark import SparkConf, SparkContext
  3. from pyspark.sql import SparkSession
  4. from pyspark.sql.window import Window
  5. from datetime import datetime
  6. # 创建对象
  7. conf = SparkConf().setAppName("data analysis")
  8. sc = SparkContext(conf=conf)
  9. # 读取CSV文件为RDD
  10. lines_rdd = sc.textFile("/data/user_balance_table.csv")
  11. # 获取表头
  12. header = lines_rdd.first()
  13. data_rdd = lines_rdd.filter(lambda row: row != header)
  14. # 每行转为列表
  15. split_rdd = data_rdd.map(lambda line: line.split(","))
  16. # 提取列索引
  17. extracted_rdd = split_rdd.map(lambda fields: (fields[1], (int(fields[4]), int(fields[8]))))
  18. # 分组聚合,分别计算流入和流出总额
  19. aggregated_rdd = extracted_rdd.reduceByKey(lambda x, y: (x[0] + y[0], x[1] + y[1]))
  20. # 结果转换
  21. result_rdd = aggregated_rdd.map(lambda x: "\t".join([x[0], str(x[1][0]), str(x[1][1])]))
  22. # 插入表头行
  23. final_rdd = sc.parallelize(["日期\t资金流入量\t资金流出量"]) + result_rdd
  24. final_rdd.saveAsTextFile("/output/result1.txt")
  25. print("已完成1、查询特定日期的资金流入和流出情况")

输出结果如下:

  1. 日期 资金流入量 资金流出量
  2. 20140805 394780870 221706539
  3. 20140808 233903717 311648757
  4. 20140811 331550471 418603336
  5. 20140814 257702660 211939431
  6. 20140820 308378692 202452782
  7. 20140823 141412027 199377531
  8. 20140826 306945089 285478563
  9. 20140829 267554713 273756380
  10. 20140830 199708772 196374134
  11. 20140827 302194801 468164147
  12. 20140821 251763517 219963356
  13. 20140818 298499146 259169016
  14. 20140815 244551620 236516007
  15. 20140812 258493673 309754858
  16. 20140803 173825397 127125217
  17. 20140728 371762756 345986909
  18. 20140725 181641088 262874791
  19. 20140722 243084133 369043423
  20. 20140719 210318023 155464283
  21. 20140716 394890140 234775948
  22. 20140713 179759885 199459990
  23. 20140710 283095921 326009240
  24. 20140707 272182847 317612569
  25. 20140409 383347565 289330278
  26. 20140403 363877120 266605457
  27. 20140331 398884905 423852634
  28. 20140328 225966355 405443946
  29. 20140831 275090213 292943033
  30. 20140825 309574223 312413411
  31. 20140822 246316056 179349206
  32. 20140816 215059736 219214339
  33. 20140813 261506619 303975517
  34. 20140810 259534870 189909225
  35. 20140804 330640884 322907524
  36. 20140729 228093046 303480103
  37. 20140723 265461894 308353077
  38. 20140717 253011280 298279385
  39. 20140714 254797524 284753279
  40. 20140711 208671021 240050748
  41. 20140708 224240103 340453063
  42. 20140630 334054112 456547794
  43. 20140321 282351818 259655286
  44. 20140324 313180334 437825259
  45. 20140402 355347118 272612066
  46. 20140414 309853269 415986984
  47. 20140417 355792647 265341592
  48. 20140420 191259529 161057781
  49. 20140501 193045106 143362755
  50. 20140504 303087562 413222034
  51. 20140513 275241493 257918375
  52. 20140519 259077930 293791406
  53. 20140522 344636549 251108485
  54. 20140603 270887462 385622582
  55. 20140612 332365185 236467885
  56. 20140615 166080126 116623756
  57. 20140323 167456369 186443311
  58. 20140326 272935544 450254233
  59. 20140329 160250985 155006056
  60. 20140407 196936223 176966561
  61. 20140410 386567460 286914864
  62. 20140416 387847838 255914640
  63. 20140422 285248757 268810141
  64. 20140425 220927432 227764292
  65. 20140506 318002728 341108696
  66. 20140515 313367089 238307643
  67. 20140524 160073254 154409868
  68. 20140527 299049555 321965845
  69. 20140530 226547701 312802179
  70. 20140605 380042567 355645445
  71. 20140614 181574530 229916191
  72. 20140623 232227670 373779624
  73. 20140415 428681231 285293076
  74. 20140427 146837951 191915377
  75. 20140502 125336258 121222064
  76. 20140505 370924149 309330781
  77. 20140508 392838756 273187499
  78. 20140514 305474522 316225442
  79. 20140517 170983868 145854372
  80. 20140526 344890868 274707572
  81. 20140529 320549863 313827800
  82. 20140622 147180819 361285652
  83. 20140625 264663201 547295931
  84. 20140628 153826161 283400236
  85. 20140706 199569025 195530758
  86. 20140709 278005555 269642881
  87. 20140712 177644343 149081488
  88. 20140718 208959595 208671287
  89. 20140724 277044480 347622431
  90. 20140727 151406251 166610652
  91. 20140730 209917272 250117716
  92. 20140802 189092130 172250225
  93. 20140217 706118060 405809267
  94. 20131120 166163002 86951218
  95. 20131111 147986439 227124951
  96. 20131102 62132300 26705506
  97. 20131024 69530830 58183921
  98. 20131015 85704304 35099198
  99. 20131012 81901136 31322983
  100. 20131013 71149981 31850475
  101. 20131029 102050144 43052468
  102. 20131104 300027403 130970051
  103. 20131110 164813471 85293644
  104. 20131113 174554976 79121440
  105. 20131116 118085705 28996272
  106. 20131119 131365419 70308235
  107. 20131122 128528687 82717921
  108. 20131125 147143602 70113127
  109. 20131203 268666856 101662045
  110. 20131209 174652812 133355299
  111. 20131214 129045596 52234651
  112. 20131208 124886903 76314292
  113. 20131205 190825287 118256819
  114. 20131124 102394991 85555947
  115. 20131121 221166938 74733962
  116. 20131118 195766477 136916782
  117. 20131112 148469647 131263524
  118. 20131106 181474910 131707820
  119. 20131028 129993375 55089464
  120. 20131025 69936453 52225802
  121. 20131022 145611496 96172537
  122. 20131019 53148443 26684697
  123. 20140216 331324628 183057224
  124. 20131216 196489931 156157326
  125. 20131213 164672690 90778214
  126. 20131210 179471612 147147341
  127. 20131207 138882605 71916047
  128. 20131123 89109018 48882131
  129. 20140223 337053711 195214052
  130. 20140313 346286910 316973542
  131. 20140310 497338076 308040624
  132. 20140317 339008082 440624592
  133. 20140314 315897431 311575572
  134. 20140311 430500816 496039886
  135. 20140302 276202230 246199417
  136. 20140225 563505889 299155352
  137. 20140309 244752519 206312503
  138. 20140315 287407002 242799048
  139. 20140318 435479117 410240726
  140. 20140221 353981687 178914448
  141. 20140218 593563145 271125324
  142. 20140212 763009770 354585919
  143. 20140209 341911234 262954049
  144. 20140206 227860276 111635336
  145. 20140205 209043990 95407704
  146. 20140208 358255468 183432237
  147. 20140211 818803205 243058162
  148. 20140220 478925191 230855410
  149. 20140207 578818221 273482213
  150. 20140201 64287172 61527060
  151. 20140117 345426853 127385210
  152. 20140116 374947083 153167426
  153. 20140119 185082022 117629351
  154. 20140125 440854623 185524856
  155. 20140127 657199484 280645861
  156. 20131220 133867400 153678963
  157. 20131217 193980797 116537843
  158. 20140112 228255344 141505812
  159. 20131221 112000779 83151594
  160. 20131222 154543217 83998249
  161. 20131228 192808006 61383220
  162. 20140102 434956739 190155450
  163. 20140105 206030707 156781996
  164. 20140113 447207050 178923772
  165. 20140110 237797636 117259153
  166. 20140107 589726496 137972793
  167. 20131224 305406334 118607911
  168. 20130824 44367268 14316598
  169. 20131011 82674757 27666473
  170. 20131002 11562708 7233874
  171. 20130930 28398050 30181353
  172. 20130921 32406340 26596179
  173. 20130906 38923186 33417903
  174. 20130831 47655303 22012016
  175. 20130828 46602319 33696861
  176. 20130816 41683536 33739844
  177. 20130813 48720919 28790328
  178. 20130804 45745254 8263965
  179. 20130729 53512076 18599364
  180. 20130723 58136147 24404051
  181. 20131010 72094613 52244531
  182. 20130820 53675509 30131225
  183. 20130817 17670519 4674983
  184. 20130811 55519543 15372680
  185. 20130805 43632203 15797507
  186. 20130730 47481243 13048582
  187. 20130724 48422518 36258592
  188. 20130725 57433418 38212836
  189. 20130731 54569637 9534040
  190. 20130803 21595789 20701797
  191. 20130806 50866184 16401387
  192. 20130815 42421222 52659327
  193. 20130818 59703092 15218300
  194. 20130827 45268028 60137633
  195. 20130830 56488844 20630752
  196. 20130908 38796909 14919122
  197. 20130911 98944459 71674082
  198. 20130914 30975443 36312660
  199. 20131004 19907689 23412350
  200. 20130904 33366708 27452600
  201. 20130907 34076183 20344424
  202. 20130910 94684143 37128363
  203. 20130919 24778048 11418512
  204. 20131003 10101194 6223263
  205. 20131009 72422299 33999376
  206. 20130711 44075197 3508800
  207. 20130714 22615303 2784107
  208. 20130720 20439079 4601143
  209. 20130718 24234505 11765356
  210. 20130715 48128555 13107943
  211. 20130712 34183904 8492573
  212. 20130706 36751272 1616635
  213. 20130710 30696506 2597169
  214. 20130713 15164717 3482829
  215. 20130719 33680124 9244769
  216. 20130722 40448896 19144267
  217. 20140817 149978271 139564084
  218. 20140824 130195484 191080151
  219. 20140809 160262764 163611708
  220. 20140806 288821016 282346594
  221. 20140731 191728916 277194379
  222. 20140704 211649838 264494550
  223. 20140412 177642053 123295320
  224. 20140406 129477254 139576683
  225. 20140325 314345006 312710515
  226. 20140322 191700135 138039412
  227. 20140828 245082751 297893861
  228. 20140819 266401973 254929877
  229. 20140807 247646474 253659514
  230. 20140801 374884735 252540858
  231. 20140726 128268053 282653341
  232. 20140720 176449304 174462836
  233. 20140705 169383796 272535138
  234. 20140702 384555819 328950951
  235. 20140327 266231082 359071642
  236. 20140330 205533934 264714811
  237. 20140405 202336542 163199682
  238. 20140408 354770149 250015131
  239. 20140411 237829882 277077434
  240. 20140423 313677307 278470936
  241. 20140426 151625415 158122962
  242. 20140429 330607104 307578349
  243. 20140507 417327518 239372999
  244. 20140510 287240171 147248328
  245. 20140516 231967423 282094916
  246. 20140525 166943526 231004758
  247. 20140528 276134813 415891684
  248. 20140531 146823669 142862063
  249. 20140606 301413900 274862067
  250. 20140609 366114374 287520152
  251. 20140618 335262709 421920230
  252. 20140621 177999186 231003775
  253. 20140624 245450766 428471509
  254. 20140627 264282703 399444352
  255. 20140320 365011495 336076380
  256. 20140401 453320585 277429358
  257. 20140404 251895894 200192637
  258. 20140413 208172985 178934722
  259. 20140419 268729366 146374940
  260. 20140428 324937272 327724735
  261. 20140503 185094488 199568043
  262. 20140509 281479009 247743971
  263. 20140512 325108597 293952908
  264. 20140518 164419642 153440019
  265. 20140521 297799722 250223726
  266. 20140602 158219402 170409506
  267. 20140608 302171269 169525332
  268. 20140611 327661453 246127540
  269. 20140617 270350693 502560223
  270. 20140620 251582530 286583065
  271. 20140626 297628039 418742109
  272. 20140629 158801540 261170799
  273. 20140701 384428753 374164541
  274. 20140418 239300383 225952909
  275. 20140421 301134667 295635256
  276. 20140424 318358891 224536754
  277. 20140430 260091330 281835975
  278. 20140511 182424063 152945581
  279. 20140520 453955303 260040720
  280. 20140523 249546195 229000787
  281. 20140601 183489775 149829253
  282. 20140604 274460744 303978838
  283. 20140607 187801995 146203577
  284. 20140610 354031597 298190025
  285. 20140613 216923770 386799040
  286. 20140616 387308484 492349489
  287. 20140619 338609087 284956260
  288. 20140703 297894643 289009780
  289. 20140715 334810012 261722182
  290. 20140721 378088594 434191479
  291. 20140213 626698794 362757986
  292. 20131117 111786622 42358155
  293. 20131114 167996058 52554150
  294. 20131108 231749471 92856307
  295. 20131105 180904814 82689864
  296. 20131030 109663260 63908701
  297. 20131027 68007543 46520570
  298. 20131021 106030290 45781403
  299. 20131018 98151450 15938355
  300. 20131014 130315300 40652625
  301. 20131017 87203217 23274764
  302. 20131020 47766681 50884342
  303. 20131023 106093112 73788462
  304. 20131026 55752506 49357211
  305. 20131101 150904945 66933119
  306. 20131107 167963464 83306452
  307. 20131128 139760425 61453591
  308. 20131206 152197159 82625571
  309. 20131212 140360007 92090275
  310. 20131215 205882387 54757146
  311. 20140215 255393179 121463693
  312. 20131211 239916977 110314592
  313. 20131202 345313258 128465086
  314. 20131130 116865492 119660311
  315. 20131127 134774128 86129498
  316. 20131115 124270704 58210254
  317. 20131109 126467028 45885771
  318. 20131103 68707870 30895754
  319. 20131031 90926701 55607833
  320. 20131016 100948091 51261982
  321. 20131204 219456372 69981329
  322. 20131201 137889992 94632233
  323. 20131129 122536344 123982166
  324. 20131126 258037702 65802983
  325. 20140226 680801145 284819682
  326. 20140301 362865580 211279011
  327. 20140304 524146340 250562978
  328. 20140319 359014064 429298917
  329. 20140316 269387391 390584547
  330. 20140307 380139779 291087220
  331. 20140308 243274169 140323202
  332. 20140305 454295491 209072753
  333. 20140227 672909288 492786036
  334. 20140224 656317045 473470156
  335. 20140204 83653646 44927333
  336. 20140222 282022706 134735118
  337. 20140228 428721754 322030204
  338. 20140303 505305862 513017360
  339. 20140306 561787770 243149884
  340. 20140312 377007897 416491268
  341. 20140203 84329848 46109194
  342. 20140131 87324175 48132389
  343. 20140202 57912761 24395720
  344. 20140214 490710434 263261899
  345. 20140219 408367966 323990451
  346. 20140210 647465140 431753411
  347. 20140126 528402520 331752519
  348. 20130929 34433848 40295202
  349. 20140129 952479658 215164666
  350. 20140123 481450097 209024328
  351. 20140120 335761027 442996084
  352. 20140114 356907128 159778389
  353. 20130721 21142394 2681331
  354. 20140122 498730606 292856188
  355. 20140128 843424742 248334316
  356. 20140130 227916211 105288105
  357. 20140124 614103894 345829001
  358. 20140121 412854611 302825136
  359. 20140118 233200688 142869842
  360. 20140115 391408718 177618247
  361. 20131229 161473347 55129989
  362. 20131226 220287409 241852564
  363. 20140103 342074805 127714255
  364. 20131223 198747367 138478245
  365. 20140106 442494042 190917629
  366. 20140109 280698487 140391237
  367. 20131218 180215804 202220872
  368. 20131219 233631357 164023344
  369. 20131225 380076148 172755480
  370. 20131231 265851934 134232530
  371. 20140108 264025160 213880074
  372. 20140111 243403438 71530182
  373. 20140104 186085910 99869074
  374. 20140101 330926565 77367755
  375. 20131230 286358778 179826624
  376. 20131227 211118967 163522548
  377. 20130925 47274168 74838162
  378. 20131008 109806912 77856096
  379. 20131005 26364686 13966453
  380. 20130927 42166121 27639603
  381. 20130924 74250859 56680792
  382. 20130918 42926608 47203221
  383. 20130915 37059683 25020715
  384. 20130912 68573684 45147220
  385. 20130909 49312473 45621186
  386. 20130903 80507880 39328144
  387. 20130825 43306288 18117808
  388. 20130822 89130737 25000672
  389. 20130819 109184209 28339260
  390. 20130810 20615307 26614408
  391. 20130807 43908081 29708706
  392. 20130801 53369962 18864468
  393. 20130726 44721817 39192369
  394. 20130829 47518666 35944968
  395. 20130901 56239802 59339949
  396. 20130826 74496541 20637986
  397. 20130823 37878575 25680323
  398. 20130814 30541167 15031683
  399. 20130808 44493490 29551691
  400. 20130802 38064536 40150769
  401. 20130727 17194451 15058893
  402. 20130728 36255382 7683211
  403. 20130809 33425186 30131015
  404. 20130812 94520502 28586669
  405. 20130821 38184446 29983342
  406. 20130902 140844739 17785524
  407. 20130905 38716505 21800904
  408. 20130917 76204815 58260798
  409. 20130920 28365762 15188254
  410. 20130923 54658160 58285879
  411. 20130926 68718693 48467529
  412. 20131001 19137499 12813267
  413. 20131007 42797733 28894400
  414. 20130913 71655946 60512675
  415. 20130916 161656210 45184589
  416. 20130922 67514169 47962055
  417. 20130928 39995798 58105720
  418. 20131006 38730653 13464528
  419. 20130717 29015682 10911513
  420. 20130705 11648749 2763587
  421. 20130702 29037390 2554548
  422. 20130708 57258266 8347729
  423. 20130709 26798941 3473059
  424. 20130703 27270770 5953867
  425. 20130701 32488348 5525022
  426. 20130704 18321185 6410729
  427. 20130707 8962232 3982735
  428. 20130716 50622847 11864981

2、活跃用户分析

使用 user_balance_table ,定义活跃用户为在指定月份内有至少5天记录的用户,统计2014年8月的活跃用户总数。

输出格式如下:

<活跃用户总数>

代码如下:

  1. # 提取user_id、report_date字段
  2. mapped_rdd = split_rdd.map(lambda fields: (fields[0], datetime.strptime(fields[1], "%Y%m%d")))
  3. # 筛选出2014年8月的记录
  4. filtered_rdd = mapped_rdd.filter(lambda x: x[1].year == 2014 and x[1].month == 8)
  5. # 聚合
  6. grouped_rdd = filtered_rdd.groupByKey()
  7. # 统计记录数量,过滤活跃用户
  8. active_users_rdd = grouped_rdd.filter(lambda x: len(list(x[1])) >= 5)
  9. # 统计活跃用户总数
  10. total_active_users = active_users_rdd.map(lambda x: x[0]).distinct().count()
  11. print("已完成2、活跃用户分析\n2014年8月期间的活跃用户总数为:", total_active_users)

三、PySpark SQL编程

1、按城市统计2014年3月1日的平均余额

计算每个城市在2014年3月1日的用户平均余额(tBalance),按平均余额降序排列。

输出格式如下:

<城市ID> <平均余额>

代码如下:

  1. spark = SparkSession.builder.getOrCreate()
  2. # 从HDFS读取CSV文件
  3. df_bal = spark.read.csv("/data/user_balance_table.csv", header=True, inferSchema=True)
  4. df_city = spark.read.csv("/data/user_profile_table.csv", header=True, inferSchema=True)
  5. df = df_bal.select("user_id", "report_date", "tBalance")\
  6. .filter(col("report_date") == "20140301")\
  7. .join(df_city.select("user_id","city"), on="user_id")
  8. result_df = df.groupBy("city").agg(mean(col("tBalance")).cast("int").alias("tBalance_mean"))\
  9. .sort(col("tBalance_mean").desc())
  10. # 将结果转换为RDD,并进行格式调整(添加表头,并以tab分隔每列)
  11. data_rdd = result_df.rdd.map(lambda row: "\t".join(map(str, row)))
  12. result2 = sc.parallelize(["城市ID\t平均余额"] + data_rdd.collect())
  13. result2.saveAsTextFile("/output/result2.txt")
  14. print("已完成1、按城市统计2014年3月1日的平均余额")

输出结果如下:

  1. 城市ID 平均余额
  2. 6281949 2795923
  3. 6301949 2650775
  4. 6081949 2643912
  5. 6481949 2087617
  6. 6411949 1929838
  7. 6412149 1896363
  8. 6581949 1526555

2、统计每个城市总流量前3高的用户

统计每个城市中每个用户在2014年8月的总流量(定义为total purchase_amt+total_redeem_amt),并输出每个城市总流量排名前三的用户ID及其总流量。

输出格式如下:

<城市ID> <用户ID> <总流量>

代码如下:

  1. windowSpec = Window.partitionBy("city").orderBy(col("total_amt").desc())
  2. df = df_bal.select("user_id", "report_date", "total_purchase_amt", "total_redeem_amt")\
  3. .filter(df_bal.report_date.like("201408%"))\
  4. .join(df_city.select("user_id","city"), on="user_id")
  5. result_df = df.groupBy("city", "user_id") \
  6. .agg((sum(col("total_purchase_amt")) + sum(col("total_redeem_amt"))).alias("total_amt"))\
  7. .filter(col("total_amt") > 0)\
  8. .withColumn("rn", row_number().over(windowSpec))\
  9. .filter(col("rn") <= 3)\
  10. .sort(col("city"), col("rn"))\
  11. .select("city", "user_id", "total_amt")
  12. # 输出结果
  13. data_rdd = result_df.rdd.map(lambda row: "\t".join(map(str, row)))
  14. result3 = sc.parallelize(["城市ID\t用户ID\t总流量"] + data_rdd.collect())
  15. result3.saveAsTextFile("/output/result3.txt")
  16. print("已完成2、统计每个城市总流量前3高的用户")
  17. sc.stop()
  18. spark.stop()

输出结果如下:

  1. 城市ID 用户ID 总流量
  2. 6081949 27235 108475680
  3. 6081949 27746 76065458
  4. 6081949 18945 55304049
  5. 6281949 15118 149311909
  6. 6281949 11397 124293438
  7. 6281949 25814 104428054
  8. 6301949 2429 109171121
  9. 6301949 26825 95374030
  10. 6301949 10932 74016744
  11. 6411949 662 75162566
  12. 6411949 21030 49933641
  13. 6411949 16769 49383506
  14. 6412149 22585 200516731
  15. 6412149 14472 138262790
  16. 6412149 25147 70594902
  17. 6481949 12026 51161825
  18. 6481949 670 49626204
  19. 6481949 14877 34488733
  20. 6581949 9494 38854436
  21. 6581949 26876 23449539
  22. 6581949 21761 21136440

四、总结

RDD编程主要练习了filter、map、reduceByKey、saveAsTextFile、groupByKey等算子的使用,Spark SQL编程主要练习了DataFrame操作、聚合函数、窗口函数等内容。

注:本文转载自blog.csdn.net的唯余木叶下弦声的文章"https://blog.csdn.net/weixin_44458771/article/details/145260559"。版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。如有侵权,请联系我们删除。
复制链接
复制链接
相关推荐
发表评论
登录后才能发表评论和回复 注册

/ 登录

评论记录:

未查询到任何数据!
回复评论:

分类栏目

后端 (14832) 前端 (14280) 移动开发 (3760) 编程语言 (3851) Java (3904) Python (3298) 人工智能 (10119) AIGC (2810) 大数据 (3499) 数据库 (3945) 数据结构与算法 (3757) 音视频 (2669) 云原生 (3145) 云平台 (2965) 前沿技术 (2993) 开源 (2160) 小程序 (2860) 运维 (2533) 服务器 (2698) 操作系统 (2325) 硬件开发 (2492) 嵌入式 (2955) 微软技术 (2769) 软件工程 (2056) 测试 (2865) 网络空间安全 (2948) 网络与通信 (2797) 用户体验设计 (2592) 学习和成长 (2593) 搜索 (2744) 开发工具 (7108) 游戏 (2829) HarmonyOS (2935) 区块链 (2782) 数学 (3112) 3C硬件 (2759) 资讯 (2909) Android (4709) iOS (1850) 代码人生 (3043) 阅读 (2841)

热门文章

111
大数据
关于我们 隐私政策 免责声明 联系我们
Copyright © 2020-2025 蚁人论坛 (iYenn.com) All Rights Reserved.
Scroll to Top